Некоммерческое акционерное общество
"Северо-Казахстанский университет
имени Манаша Козыбаева"
Крупнее
Галерея цитат

Человек, по настоящему мыслящий, черпает из своих ошибок не меньше познания, чем из своих успехов.

Джон Дьюи
Новости факультетов
ФИЭП: Департамент юстиции СКО провёл лекцию для студентов ФИЭП в рамках идеологии «Закон и порядок»

2 декабря 2025 года Департамент юстиции Северо-Казахстанской области провёл лекцию для студентов в рамках реализации идеологии «Закон и порядок». Меро читать далее

ФИЭП: Северо-Казахстанский университет им. М. Козыбаева реализует стратегию Президента Казахстана

Вчера, 31 октября 2025 года, в Астане состоялся Международный форум стратегических партнёров «Казахстан — территория академического образования», на к читать далее

Читать все

Разработка нейросетевой модели распознавания БПЛА через оптико-электронный канал, интегрируемый в систему Data Fusion

Данное исследование финансируется Комитетом науки Министерства науки и высшего образования Республики Казахстан (грант № АР19679009).

Руководитель проекта: Курмашев И.Г., к.т.н.

Исполнители проекта: Курмашев И.Г., к.т.н., Сербин Василий Валерьевич, к.т.н., Арричиелло Филиппо, д.т.н., Семенюк В.В., магистр, Алёшин Д.В., магистр, Крючков В.Н., магистр, Курмашева Л.Б., магистр.

Сроки исполнения: 2023 – 2025 гг.

Цель проекта: Разработать программную модель распознавания БПЛА, на основе нейронных сетей, адаптированную в платформу «FMCW-радар + видеонаблюдение», выполняющее функцию качественного и высокоточного распознавания, классификации и различения данных объектов от птиц за счет анализа оптического канала и микродоплеровских характеристик цели.  

Ожидаемые результаты: Разработка программной модели распознавания БПЛА на основе алгоритмов двух типов нейронных сетей, адаптированных в оптический и радиолокационный канал системы «FMCW-радар+видеонаблюдение».

Описание проекта: Идея проекта заключается в создании программной модели нейронных сетей, одна из которых предназначена для распознавания БПЛА через радиолокационное изображение микродоплеровских сигнатур благодаря более высокоточной классификации беспилотников и птиц. Второй сегмент программной модели определяет нейросетевой приложение по распознаванию БПЛА через видеоданные и фото-изображения объектов в воздушном пространстве (коптеры, беспилотные летательные аппараты «летающее крыло», птицы и др.). Особенность разработки заключается в ее адаптации к радиолокационной системе Антидрон с программно-аппаратной платформой на основе «Радар + оптический канал» как элемента автоматизации распознавания БПЛА по двум каналам детектирования. Безусловно, работоспособность и эффективность разрабатываемой программной модели зависит от характеристик радиолокационной системы и оптической камеры, поэтому одним из пунктов задач является выбор и обоснование модели Радара и средства видеонаблюдения. Также будут представлены математические особенности отражения радиолокационного сигнала от цели с источников вибрации, что определяет доплеровские показатели для распознавания летающих объектов (для БПЛА и птиц).  Структурное описание системы Data Fusion, в которую интегрируется разрабатываемая программная модель, характеристики нейросетевых алгоритмов, которые рассматриваются как основа программ для классификации и распознавания в рамках исследования.